A Physiological-based Pharmacokinetic (PBPK) Modeling Approach to Quantifying Drug-Drug Interactions: Applications to the Development of Fenfluramine (ZX008) for Treatment of Seizures in Dravet Syndrome (DS)

Li Zhang1, Brooks Boyd2, Michael Trang1, Mohamed Ismail3, Gail Farfel2, Christopher Rubino1

1Institute for Clinical Pharmacodynamics, Inc., Schenectady, NY, USA; 2Zogenix, Inc. Emeryville, CA

INTRODUCTION

• Dravet syndrome (DS) is a severe form of childhood epilepsy in which seizures are often refractory to traditional antiepileptic drugs (AEDs).
• Low dose fenfluramine (ZX008; Zogenix, Inc.) has shown promise in DS patients and is currently under development as adjunctive therapy (top dose of 0.8 mg/kg/day, max of 30 mg/d), including combination with stiripentol/clobazam/valproic acid (STP/CLB/VPA) worldwide.
• Treatment of DS patients often requires a regimen of several AEDs that are metabolized via CYP450, which might result in drug-drug interactions (DDI).

METHODS

• Study 1505 Design
 - Phase 1, single dose, three-way crossover study in healthy adults (N=20)
 - Study arm (17 days wash out period):
 - a. ZX008 0.8 mg/kg;
 - b. STP 3500 mg / CLB 20 mg / VPA 25 mg/kg (max 1500 mg);
 - c. ZX008 0.8 mg/kg + STP 3500 mg / CLB 20 mg / VPA 25 mg/kg (max 1500 mg);
• Draft, pre-lock PK data were available at the time of this study.

RESULTS

• Monotherapy model
 - Fenfluramine (FEN) PBPK model comprised of ten perfusion-limited tissues.
 - Drug-drug interaction models
 - The DDI model predicted the mean AUC0-72 of FEN elevated 1.67-fold after in conjunctive with STP/CLB/VPA, suggesting that the DDI between FEN and STP/CLB is modest in healthy adults.
 - The DDI model predicted the mean AUC0-72 of STP/CLB/VPA to marginally increased in patients with renal impairment, suggesting that FEN dose adjustment might not be warranted in these sub-populations.
 - Model simulations suggest that FEN/norFEN exposure would be marginally increased in patients with renal impairment, qualifying the robustness of this model.

CONCLUSIONS

• PBPK modeling the DDI between FEN and STP/CLB has been developed in healthy adults. The model predicted changes of FEN/norFEN exposure after combination treatment were in good agreement with clinical observations, qualifying the robustness of this model.
• The DDI model predicted the mean AUC0-72 of STP/CLB/VPA are not significantly impacted by the co-administration of FEN in healthy adults.
• Model simulations suggest that FEN/norFEN exposure would be marginally increased in patients with renal impairment, suggesting that FEN dose adjustment might not be warranted in these sub-populations.
• This model can be further extrapolated to quantify potential DDIs and to facilitate dose justification for clinical trials of ZX008 in pediatric patients with DS.

REFERENCES