Fenfluramine in the Treatment of Drug-Resistant Seizures: Back-Translation Using Zebrafish and Mice

Jo Sourbron¹, Daniëlle Copmans¹, Nina Dirks¹, Aleksandra Siekierska¹, Michèle Partoens¹, Lieven Lagae², Peter de Witte¹

¹Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; jo.sourbron@kuleuven.be
²Department of Development and Regeneration, Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium

INTRODUCTION

Epilepsy
- Common neurological disease (up to 75 million people worldwide)
- 30% not responding to current anti-epileptic drugs (AEDs) (i.e., drug-resistant)
- Genetics: genetic, structural, metabolic, infectious/inflammatory or unknown
 - SCN1A (neuronal sodium channel, type 1, subunit α): most prominent epilepsy gene
 - SCN1A mutation in 80% of Dravet syndrome (DS) patients
- DS is a rare, severe and drug-resistant epilepsy syndrome

Fenfluramine
- Fenfluramine (FFA) is a serotonergic agent, though other pathways can be involved
- Clinical data emphasize its successful use in treating drug-resistant seizures in DS patients
- Efficacy of FFA as an AED to treat other seizures or epilepsy syndromes is currently unknown

Animal models of (drug-resistant) seizures
- Genetic zebrafish (ZF) model of DS: scn1Lab^{−/−} mutant ZF larvae mimic the drug-resistant seizures, seen in DS patients
- Chemical ZF model of generalized motor seizures: wild type (WT) ZF larvae treated with the proconvulsant, pentylenetetrazole (PTZ), a GABA_A antagonist. Some AEDs are not able to reduce PTZ-induced seizures, which leads to a limited number of effective AEDs in this model (8:10, i.e., 60%).
- Electrical mouse model (6-Hz): potential drug screening platform for drug-resistant seizures when the intensity is set on 44 mA. This idea is based on the fact that 44 mA 6-Hz seizures are resistant to several AEDs (compared to 22 mA).

METHODS

1) Zebrafish models of seizures and epilepsy

Seizures
- Chemical model: PTZ-treated WT ZF larvae (AB strain)
- Genetic model: homozygous scn1Lab^{−/−} mutant ZF larvae (αdy^{−/−})

Treatment
- Larvae were immersed in aqueous solutions (one 6 dpi larva per well of a 96-well plate): Vehicle, VHC (dimethyl sulfoxide, DMSO 0.1%) or FFA (25, 50 or 100 µM)
- 18-24 hours (h) treatment (8-12 larvae per condition; in duplicate or triplicate)

Behavior
- Locomotion: 7 dpi
 - Larval: 10 minutes (min) after 30 min habituation, a surrogate marker for the epileptiform behavior
 - Automated tracking device (ZebraBox™, Viewpoint, Lyon, France)
- A statistically significant decrease in epileptiform behavior (compared to VHC)

Statistics
- One-way ANOVA followed by Dunnett’s multiple comparison tests

2) Mice model of seizures

Seizures
- Electrically induced seizures: mice (6-Hz)

Treatment
- FA 50 µM + PTZ

Behavior
- Locomotion: 7 dpi

Statistics
- One-way ANOVA followed by Dunnett’s multiple comparison tests

RESULTS

Chemically induced seizures in ZF (PTZ)**

Behavior (locomotion), 7 dpi

Fenfluramine (FAA) was not active in a widely used ZF model of seizures induced by PTZ, an antagonist of the GABA_A receptor. Some AEDs are not able to reduce PTZ-induced seizures, which leads to a limited number of effective AEDs in this model (8:10, i.e., 60%).

CONCLUSIONS

- The efficacy of FFA was confirmed in the ZF model of DS and is in line with the clinical efficacy of FFA in treating drug-resistant seizures in DS patients.
- FFA was not active in a widely used ZF model of seizures induced by PTZ, an antagonist of the GABA_A receptor, and known to be most sensitive to GABA_Aergic AEDs. However, the exact effects of FFA on GABA_Aergic neurotransmission need to be explored.
- FFA significantly reduced seizures in the mouse 6-Hz model, which demonstrated to be a model for drug-resistant seizures.
- FFA’s efficacy in treating drug-resistant seizures in other epilepsies should be further explored.

REFERENCES