PL31. Number needed to treat (NNT) with fenfluramine to achieve a clinically meaningful reduction in convulsive seizure frequency in patients with Dravet syndrome

Joseph Sullivan, 1 Dennis Dlugos, 2 Rima Nabnout, 3 Douglas Haney, 1 Glenn Morrison, 1 Gail Farfel, 3 Bradley Galler, 3 Glenn Gammaloni 3 1University of San Francisco Well Institute for Neurosciences, CA, USA; 2Children’s Hospital of Philadelphia, PA, USA; 3Hôpital Universitaire Necker-Enfants Malades, Paris, FR; 4Burlingame, CA, USA; 5Zogenix, Inc., Emeryville, CA, USA

Introduction
- Assessments of group responses to placebo and active treatment in clinical antiepileptic drug (AED) trials are regulatory requirements, but decisions in clinical practice are made on individual-patient basis.
- Use of number needed to treat (NNT) can assist in translating clinical trial data to clinical practice.
- Selecting the right endpoints from which to calculate NNT is critical for them to be useful in informing individual decision-making.

Objectives
- The post hoc analysis used data from phase 3 and long-term extension studies of fenfluramine for the treatment of Dravet syndrome in pediatric patients (NCT02682272, NCT02082863, NCT02528988, NCT02625143).
- To determine clinically meaningful changes in monthly convulsive seizure frequency (MCSF) by evaluating the association between seizure reduction and improvement ratings on the Clinical Global Impression of Improvement (CGI-I) scale as a metric determining clinically meaningful changes in MCSF.
- To determine the NNT with fenfluramine to achieve “clinically meaningful” MCSF reductions in a pediatric Dravet syndrome population by CGI-I ratings and performance on the Behavior Rating Inventory of Executive Function (BRIEF).
- Reliable Change Index (RCI) was used to determine the magnitude of the change in BRIEF score that would be outside “normal,” defined as a change in 1.5 SDs.

Methods
- Both the CGI-I and BRIEF scores were analyzed using the RCI to determine if the change was a reliable change or a chance occurrence.
- Statistical approaches were used to determine which degree of change in MCSF was correlated with those definitions of clinically meaningful improvement.

Results
- Of 119 total patients in Study 1 with MCSF data at Visits 12–14 weeks, 68% responded to fenfluramine, and 62% had a RCI-defined improvement.
- Patients at Times of Analysis (Table 1): NNT calculations using ROC-a
derived MCSF cut points at Week 14 (Table 2: Figure 1).

Conclusions
- NNTs based on clinically meaningful endpoints provide complementary information to group mean changes often reported in clinical trials in understanding the efficiency of treatment to achieve this level of results.
- For every 2 to 3 patients with Dravet syndrome treated with fenfluramine, 1 patient achieved ≥50% or ≥75% MCSF reduction compared with placebo (large treatment effect, Cohen’s d=0.8).
- FFA’s NNT results compare favorably to similar studies of other therapies in Dravet syndrome NNT at 4 and for ≥30% response [12] and other forms of refractory epilepsy [13-17].
- Lower NNTs for a given treatment translate to fewer non-responders and lower associated burden on patients and their families.

References
- Perucca E. JAMA Neurol. 2017;83:90-100.
- Perucca E. JAMA Neurol. 2017;83:90-100.

Disclosures
- None.

Acknowledgments
- The authors thank patients, families, staff, and research teams for their contributions to this work. This study was sponsored by Zogenix, Inc.

Figure 1. NNT by Level of Improvement on Caregiver CGI-I (ROC Analysis)

- **Figure 2. Proportion of Patients With Significant, Clinically Meaningful Improvement (≥10 Point Change in Scores) in BRIEF/2 Index/Composite Scores (Post-randomization Baseline to Year 1)**

Figure 3. Fenfluramine NNT for ≥75% (Profound) Reduction in Convulsive Seizure Frequency

- **Table 1. NNT Interpretation**

- **Table 2. NNT Analysis Using ROC-Derived MCSF Cut Points at Week 14**

- **Table 3. ROC-Derived Thresholds for Clinically Meaningful Change in Seizure Frequency at Week 14**